Manufacturing with Biocomposites

Jovana Džalto
Institut für Verbundwerkstoffe, Germany
Content

• Who is IVW?
• Standard Applications for Natural Fiber Composites
• Main Challenge – Mechanical Performance
• BioBuild Materials
• Manufacturing Methods
• Results
• Summary
Who is IVW?

Established: 1990
Budget: 35 % State, 65 % External

Internal Research Projects
New Ideas, Exploratory Work, Fundamentals (DFG, RLP)

Governmental Research Projects
Funded Research Work (BMBF, BMWI, EU,…)

Industrial Projects & Cooperation
New Developments in Technology and Application, Industry Funded Research, Service Contracts

Role in the BioBuild Project

Competence Field Materials Science:
Treatment of natural fibers yielding water- and fire-resistant “green” coatings on the fibers’ surface by using bio-derived super-hydrophobic phenalkamines and water glass

Competence Field Manufacturing Science:
Processing of biocomposite panels and profiles in a continuous compression molding process by using pre-impregnated textiles developed in a previous WP

Cooperation-contract with TU
Standard Applications for Natural Fiber Composites

• Since decades common use in the automotive industry for semi-structural components
 • Door panels
 • Backrests
 • Roof stiffenings

• New application fields
 • Sports
 • Furniture
 • Ship building

• Usage of „Green Composites“

Source: Global Hemp

Mercedes E-Class

Mercedes C-Class

Source: warwick.ac.uk
Standard Manufacturing Process

- Fibers are almost randomly distributed in the non-woven

- 95% of all natural fiber composites are manufactured by compression molding, 5% injection and others

- Fiber weight content in NFC not comparable to GFC
 - 40 - 50 wt.-% for thermoplastic matrices
 - 50 - 70 wt.-% for thermoset matrices
Main Challenge – Mechanical Performance

Influence of fiber orientation in reinforcing textiles

- Multi-directional natural fiber textile
- Bi-directional natural fiber textile
- Uni-directional natural fiber textile
Main Challenge – Mechanical Performance

Influence of density on E-Modulus

![Graph showing the relationship between density and E-Modulus.](image)

- **Standard NF/PP material for automotive applications**

Low compression → low density → high porosity

High compression → high density → low porosity

Same natural fiber material
BioBuild Materials

- Increasing the mechanical performance by using aligned fibers

- Use of furan resin as an agricultural waste product from the sugar industry

- Use of leftovers from the cork stoppers manufacturing → cork composites
Impregnation of Textiles

- Impregnation of textiles with furan resin
 → Production of prepregs
- Excess resin is squeezed out in the squeeze rollers
- Subsequent press process in order to produce finished parts
Compression Molding

- Natural fibers are
 - pressure sensitive (max. 60 bar)
 - temperature sensitive (degradation at 200 °C)
- Natural fiber composites always contain porosity
 → decreasing density and mechanical performance
- Furan resin cures by a polycondensation reaction
 → steam occurs
Compression Molding

Optimization of compression molding process in order to increase the density and reduce porosity content in the composite

- repeated opening of the mold to release the steam
- Isochoric pressing with distance plates for defining the end volume
Continuous Compression Molding

- Production of almost endless panels, sandwiches, and profiles using the CCMM
- Works on the basis of a semi-continuous process with alternating press and transport stages
Other Processing Methods

Vacuum infusion
- Resin mixing, cutting of textiles, infusion, sectioning and cutting
- Resin cures at RT (48 h)

Pultrusion
- Fiber reinforcement is saturated with a resin and pulled through a heated die
- Requirements for the resin are high pot life, low viscosity, high reactivity, and low amount of volatiles
Results - Natural Fiber Composites

- Tensile modulus of flax/jute-furan composites much higher than of standard NF materials
- Lower natural fiber weight content
- Mechanical performance of NF composites depends on density

Improving the mechanical performance of natural fiber composites by using aligned fibers and optimizing the manufacturing process (increasing the density)
Results - Cork Sandwiches

- Combination of high performance NF composites with cork core
 → Improving the effective bending stiffness
 → Increase of Charpy impact resistance
- Correlation of performance to cork thickness
Summary

- Standard applications of natural fibers in Europe in the automotive industry for semi-structural components
- For the application as structural parts mechanical performance must be increased
- Increase of mechanical properties due to aligned fibers (textiles) and optimization of the manufacturing process (high density)
- Increase of bending behavior and Charpy impact resistance due to the use of cork composite as sandwich core material
Thank you for your attention

Acknowledgement
The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007 - 2013), under grant agreement Nº 285689.

Contact:
Dipl.-Ing. Jovana Džalto
Institut für Verbundwerkstoffe GmbH
67663 Kaiserslautern, Germany
Tel.: +49 (0)631 2017-437
E-Mail: jovana.dzalto@ivw.uni-kl.de